Highway Planning Using Raster Data Designing a Bypass for Hastings, Minnesota

Andrew Munsch, Department of Geography, University of Minnesota

Analysis Steps
Least-Cost Path Analysis was used to determine the alignment of possible
highway bypasses for Hastings using the spatial Analyst extension to to Arcais. The steps in this analysis were as follows.
1: Reclassify sele cted raster data to a common subjective scale
roerosenting the ecost" of construction a highway through each
cell.
2: Using map algebra, create a total cost r.
adding the cost of each data set together.
: Create Cost-Weighted distance and direction rasters trom a com 4: Create a least-cost path from the endpotint to sele cted start points for
each bypasss sing the the cost-weighted distance and direction rasters from
the previous step.

Creating the Cost Raster

data used for the analysis had a 30 meter resolution, and were
 alue judgments.

Least-Cost Path Analysis

Once the cost raster was created, the end points of the proposed
byyasseses were used to create oost weighted distance and direction rasters

 Cost Weighted Distance

Results and Conclusions

Study Area:
Proposed Trunk Hwys. at Hastings

Above is a map showing the proposed Hastings bypass integrated into

 jogs and errata. This sems to oont ou
analysis for actual highway planning.
The analysis can give a general idea of where the proposed highway
should runt, but more spee ificic knowied
 the analysis, while instructive, could not represent the final alignme
of the tuture trunk highways. Other inportant standards used in the artual engineering of high ways) could not be
taken into account using the tools provided by spatial analyst, suct

Sources and Contact Info
pata sourcea

nommon source

